Thiết kế Công_nghệ_nano_DNA

Các cấu trúc nano DNA phải được thiết kế theo ý đồ sao cho các dải axit nucleic đơn lẻ tự kết hợp thành những cấu trúc mong muốn. Quá trình này thường bắt đầu với việc xác định đặc tính của một cấu trúc đích hoặc chức năng mong muốn. Sau đó, cấu trúc bậc hai của một phức hợp đích được xác định, bao gồm thông tin về sự sắp xếp các dải axit nucleic trong cấu trúc, và những phần nào của những dải đó sẽ gắn vào với nhau. Bước cuối cùng là thiết kế cấu trúc bậc một, tức xác định trình tự chuỗi thực sự của mỗi từng axit nucleic.[22][64]

Thiết kế cấu trúc

Bước đầu tiên trong thiết kế một cấu trúc nano axit nucleic là xác định xem làm thế nào một cấu trúc cho trước có thể biểu diễn bằng một sự sắp xếp nhất định các dải axit nucleic. Bước thiết kế này xác định cấu trúc bậc hai, hay vị trí của các cặp bazơ giữ cho các dải đơn lẻ gắn kết với nhau theo hình dạng mong muốn.[22] Một vài cách tiếp cận đã được chứng minh bằng thực nghiệm:

  • Cấu trúc xếp gạch. Cách tiếp cận này phân nhỏ cấu trúc đích ra thành những đơn vị nhỏ hơn với liên kết mạnh giữa các dải chứa trong từng đơn vị, và các tương tác yếu giữa các đơn vị với nhau. Nó thường được dùng để tạo nên các mạng tuần hoàn, nhưng cũng có thể áp dụng cho tự tổng hợp theo thuật toán, tạo nên một cơ sở cho tính toán DNA. Đây là chiến lược thiết kế có ưu thế nổi trội dùng trong những năm từ giữa thập niên 1990 tới giữa thập niên 2000, trước khi phương pháp origami DNA xuất hiện.[22][65]
  • Cấp trúc gấp. Một cách tiếp cận mới hơn, tạo nên cấu trúc nano từ một dải dài duy nhất. Dải dài này có thể có một trình tự được thiết kế để gấp lại do tương tác với chính nó, hoặc có thể gấp lại nhờ những dải ngắn hơn gọi là "ghim kẹp". Phương pháp sau (dùng "ghim kẹp") gọi là origami DNA, có thể tạo nên những hình dạng bậc nano 2 hoặc 3 chiều (xem mục Cấu trúc rời rạc).[26][29]
  • Tổng hợp động lực. Cách tiếp cận này trực tiếp kiểm soát quá trình động lực học của sự tự tổng hợp DNA, xác định rõ tất cả các bước trung gian trong cơ chế phản ứng chứ không chỉ sản phẩm cuối cùng. Điều này thực hiện được nhờ sử dụng những vật liệu ban đầu có cấu trúc "kẹp tóc"; chúng tổng hợp thành hình dạng cuối cùng trong một phản ứng bậc thác, theo một trật tự nhất định(xem mục Bậc dịch chuyển dải ở trên). Cách tiếp cận này có lợi thế là xảy ra đẳng nhiệt-tức ở một nhiệt độ không đổi. Điều này trái với các cách tiếp cận nhiệt động, vốn đòi hỏi một bước ủ nhiệt mà trong đó cần thay đổi nhiệt độ để kích hoạt sự tổng hợp và khuyến khích việc hình thành chính xác các cấu trúc mong muốn.[26][53]

Thiết kế chuỗi

Sau khi bước thiết kế cấu trúc bậc hai cho phức hợp đích bằng một trong các cách tiếp cận ở trên hoàn thành, người ta cần phải tạo ra một trình tự thực sự cho chuỗi nucleotide. Thiết kế axit nucleic là quá trình gán một trình tự chuỗi nhất định cho một dải thành phần của cấu trúc sao cho chúng sẽ gắn kết thành hình dạng mong muốn. Hầu hết các phương pháp có mục đích thiết kế chuỗi sao cho cấu trúc đích có năng lượng nhỏ nhất, và do đó được ưu tiên về mặt nhiệt động, trong khi các cấu trúc tổng hợp sai phải có năng lượng lớn hơn và do đó không được ưu tiên. Điều này được thực hiện hoặc nhờ các phương pháp heuristic đơn giản và nhanh hơn như cực tiểu hóa đối xứng chuỗi, hoặc bằng cách sử dụng mô hình nhiệt động lân cận đầy đủ, vốn chính xác hơn nhưng chậm hơn và đòi hỏi năng lực tính toán (của máy tính) nhiều hơn. Các mô hình hình học được dùng kiểm tra cấu trúc bậc ba của các cấu trúc nano và để đảm bảo rằng các phức hợp đó không bị kéo căng quá mức.[64][66]

Thiết kế axit nucleic có mục đích tương tự như thiết kế protein. Trong cả hai quá trình, trình tự chuỗi đơn phân phải đảm bảo năng lượng cực tiểu cho cấu trúc đích. thiết kế axit nucleic có lợi thế là dễ dàng về mặt tính toán hơn protein, bởi quy tắc ghép cặp chuỗi đơn giản là đủ để tiên đoán ưu tiên năng lượng, không cần tới những thông tin chi tiết về gấp xếp 3 chiều tổng thể của cấu trúc. Điều này cho phép sử dụng các phương pháp heuristic đem lại những thiết kế tỏ ra bền vững trong thực nghiệm. Tuy nhiên, các cấu trúc axit nucelic ít hữu dụng bằng protein về mặt chức năng bởi protein có khả năng gấp thành những cấu trúc hết sức phức tạp, cũng như sự hạn chế về đa dạng hóa tính của bốn loại nucleotide so với 20 loại axit amin trong protein.[66]

Tài liệu tham khảo

WikiPedia: Công_nghệ_nano_DNA http://www.britannica.com/EBchecked/topic/962484 http://www.fiercedrugdelivery.com/story/dna-cages-... http://www.mdpi.com/1422-0067/13/6/7149 http://www.nature.com/nnano/journal/v7/n6/pdf/nnan... http://www.scientificamerican.com/article/nanotech... http://www.the-scientist.com/?articles.view/articl... http://adsabs.harvard.edu/abs/1998Natur.394..539W http://adsabs.harvard.edu/abs/1999Natur.397..144M http://adsabs.harvard.edu/abs/2000Natur.406..605Y http://adsabs.harvard.edu/abs/2002Natur.415...62Y